\qquad

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Find the component form and magnitude of the indicated vector.

1) Given that $P=(-4,5)$ and $Q=(-6,4)$, find the component form and magnitude of the vector $\overrightarrow{P Q}$.
2) Given that $P=(4,0)$ and $Q=(-4,9)$, find the component form and magnitude of the vector $\overrightarrow{Q P}$.

Find the component form of the indicated vector.
3) Let $u=\langle-6,2\rangle$. Find $4 u$.
4) Let $\mathbf{u}=\langle-7,4\rangle, v=\langle 8,-6\rangle$. Find $-6 u+4 v$.

Find the unit vector in the direction of the given vector. Write your answer in the indicated form.
5) Let $u=\langle 5,-3\rangle$. Find the unit vector in the direction of u, and write your answer in component form.
6) Let $u=\langle 4,3\rangle$. Find the unit vector in the direction of u, and write your answer in component form.

Find the component form of the vector v.
7)

8)

Find the magnitude and direction angle for the following vector. Give the direction angle as angle in [0, 360°) rounded to the nearest tenth.
9) $\langle 10,-11\rangle$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
10) $-2 i+7 j$
A) $\sqrt{53}, 105.9^{\circ}$
B) $53,105.9^{\circ}$
C) $9,74.1^{\circ}$
D) $\sqrt{53}, 74.1^{\circ}$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem.
11) An airplane is flying on a bearing of 335° at 430 mph . Find the component form of the velocity of the airplane. Round your answer to the nearest hundredth.
12) A basketball player shoots the ball with a velocity of $13.6 \mathrm{ft} / \mathrm{s}$ at an angle of 33.1° with the horizontal. To the nearest tenth, find the magnitude of the horizontal component of the resultant vector.
13) A force of 90 lb acts on an object at an angle of 55°. A second force of 100 lb acts on the object at an angle of -60°. Find the direction and magnitude of the resultant force.
14) Determine the resultant effect of three people pulling on a car as shown in the drawing

$a=95.0 \mathrm{lb}, \mathrm{b}=45.0 \mathrm{lb}, c=41.0 \mathrm{lb}, d=18^{\circ}, e=19^{\circ}$
Round results to an appropriate number of significant digits.

