- **4** a. $1s^22s^2$; it is likely to form an ion with a 2+ charge because by losing two valence electrons, it achieves the stable noble-gas configuration 1s².
 - b. 1s²2s²2p⁵; it is likely to form an ion with a 1- charge because by gaining one electron, it achieves the stable noble-gas configuration 1s²2s²2p⁶.
 - c. $1s^22s^22p^63s^23p^6$; it is not likely to bond or form ions because it already has a stable noble-gas configuration.
 - d. $1s^22s^22p^63s^23p^4$; it is likely to form an ion with a 2- charge because by gaining two electrons, it achieves the stable noble-gas configuration 1s²2s²2p⁶3s²3p⁶.
 - e. 1s²2s²2p⁶3s¹; it is likely to form an ion with a 1+ charge because by losing its one valence electron, it achieves the stable noble-gas configuration 1s²2s²2p⁶.
 - f. $1s^22s^22p^3$; it is likely to form an ion with a 3- charge because by gaining three electrons, it achieves the stable noble-gas configuration 1s²2s²2p⁶.

Math Skills Transparency 8 -Determining Numbers of Ions

- **1.** Total positive charge + Total negative charge = Zero
- **2.** a, one
 - b. two
 - c. three
- 3. a. three
 - b. one
 - c. two
- **4.** a. $(NH_4)_2SO_4$; $(2 \times 1+) + (1 \times 2-) = 0$
 - b. Na_3PO_4 ; $(3 \times 1+) + (1 \times 3-) = 0$
 - c. $Mg(HSO_4)_2$; $(1 \times 2+) + (2 \times 1-) = 0$
 - d. $Al_2(CO_3)_3$; $(2 \times 3+) + (3 \times 2-) = 0$
 - e. $(NH_4)_3 AsO_4$; $(3 \times 11-) + (1 \times 3-) = 0$
 - f. $Ca(C_2H_3O_2)_{7}$; $(1 \times 2+) + (2 \times 1-) = 0$
 - g. NH_4NO_2 ; $(1 \times 1+) + (1 + 1-) = 0$

Study Guide - Chapter 7 -Ionic Compounds and Metals

Section 7.1 Ion Formation

- 1. chemical bond
- 2. nucleus
- 3. electrons
- 4. ions
- **5.** valence
- 6. energy level
- 7. noble gases
- 8. octet
- **9.** pseudo-noble gas formations
- **10.** false
- **11.** true
- 12. false
- **13.** true
- **14.** true
- 15. false
- **16.** true
- 17. false

Section 7.2 Ionic Bonds and Ionic Compounds

- 1. c
- **2.** b
- **3.** a
- **4.** c
- **5.** c
- **6.** d
- **7.** a
- 8. b
- 9. b
- 10. b
- **11.** b
- **12.** high
- **13.** high
- **14.** hard
- 15. brittle **16.** poor

- **17.** good
- **18.** good
- **19.** true
- **20.** true
- 21. false
- 22. false
- **23.** true

Section 7.3 Names and Formulas for **Ionic Compounds**

- 1. monatomic
- 2. oxidation number
- 3. electrons
- 4. zero
- 5. polyatomic
- 6. oxyanion
- 7. -ate
- **8.** –ite
- 9. cation
- 10. anion
- 11. subscript
- 12. lower right
- **13.** one
- **14.** e
- **15.** d
- 16. b
- 17. c
- **18.** a
- 19. sodium iodide
- 20. calcium chloride
- 21. potassium sulfide
- 22. magnesium oxide
- 23. lithium hydrogen sulfate
- 24. ammonium bromide
- 25. calcium nitride
- **26.** cesium phosphide
- 27. potassium bromate
- 28. magnesium hypochlorite
- 29. lithium peroxide

Chemistry: Matter and Change

- **30.** beryllium phosphate
- 31. ammonium carbonate
- **32.** sodium bromate
- 33. iron(III) oxide
- 34. iron(II) iodate
- **35.** Be₃N₂
- **36.** NiCl,
- **37.** KClO₂
- **38.** Cu₂O
- **39.** MgSO₃
- **40.** $(NH_{i})_{3}S$
- **41.** Ca(IO₃)₂
- **42.** Fe(ClO₄)₃
- **43.** Na₃N

Section 7.4 Metallic Bonds and the **Properties of Metals**

- **1.** electron sea model
- 2. They are free to move from one atom to another.
- 3. the valence electrons
- 4. Cations; they are positively charged.
- **5.** The electrons are not completely lost by the metal atoms, as they are in an ionic solid.
- 6. They are bonded by the oppositely charged electron sea that surrounds them.
- 7. yes; when the metal is hammered, the delocalized electrons move, keeping the metallic bonds intact.
- 8. no
- **9.** Yes; the delocalized electrons move, absorb and release protons.
- **10.** Yes; the metallic bonds are strong.
- **12.** Yes; when the metal is pulled, the delocalized electrons move, keeping the metallic bonds intact.
- **13.** no
- **14.** Yes; the delocalized electrons are mobile.