CHAPTER 6: DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELING

Section 6-1: Slope Fields and Euler's Method

Objectives:

- Construct antiderivatives using the FTC.
- Solve initial value problems.
- Construct slope fields and interpret slope fields as visualizations of different equations.

1. Definition: An equation involving a derivative is called a differential equation. The order of a differential equation is the order of the highest derivative involved in the equation.

Example 1: Find the general solution to the exact differential equation.
$\frac{d y}{d x}=\frac{1}{x}-\frac{1}{x^{2}}$

2. Initial Value Problems

- We often want to find the original function of x given its derivative and given a point (x, y).
- When we use the point-slope formula, we do exactly this for a linear function.
- A very important note: If $f(x)$ is continuous, the initial condition pins down the curve in the entire domain, BUT if $f(x)$ is discontinuous, the initial condition only pins down that piece of the graph that passes through that point. In this case the domain MUST be specified.

Example 2: Find the solution to the differential equation $f^{\prime}(x)=2 e^{x}-\cos x$ for which $f(0)=3$.

Example 3: Find the particular solution to the equation $\frac{d y}{d x}=e^{x}-6 x^{2}$ whose graph passes through the point $(1,0)$.
3. Solving an initial value problem when we are unable to find an antiderivative... (Use the Fundamental Theorem - your answer will contain a definite integral)
Example 4: $\frac{d y}{d x}=\sqrt{2+\cos x}$ and $\mathrm{y}=-3$ when $\mathrm{x}=0$

Example 2: Find the solution to the differential equation $f^{\prime}(x)=e^{-x^{2}}$ for which $f(7)=3$.
4. Graphing a General Solution

Graph the family of functions that solve the differential equation $\frac{d y}{d x}=\cos (x)$. Calculator keys: Sketch
5. Introduction to Slope Fields

1. Do Exploration 1 on page 323.
2. Read through page 323 and work through example 6 and through to page 324 .
3. Does your calculator have the capability of drawing slope fields?

Assignment: Pg 327 \#'s 1-23 odds

Section 6-1 Contd: Slope Fields

A slope field will let you solve complicated differential equations graphically, whereas antiderivatives let you solve them algebraically. Euler's method is a way to solve differential equations numerically. A slope field is another way to show a "family of antiderivatives".

Use the following examples of differential equations to draw slope fields. For each, make a conjecture/conclusion.

1. $\frac{d y}{d x}=2$
2. $\frac{d y}{d x}=x+1$
3. $\frac{d y}{d x}=2 y$
4. $\frac{d y}{d x}=x+y$

Conclusion:
Conclusion:

Assignment: Slope fields worksheet

Section 6-2: Antidifferentiation by Substitution

Objectives:

- Compute definite and indefinite integrals by the method of substitution.

1. Indefinite Integrals
A. $\int f(x) d x$ denotes the family of all anti-derivatives of $\mathrm{f}(\mathrm{x})$ and is called the \qquad
$x \rightarrow$ Variable of Integration $\quad \int \rightarrow$ Integral Sign
$f \rightarrow$ Function called the Integrand of the Integral
B. Definite Integral
vs.
Indefinite Integral
C. Examples: $\int \frac{x^{5}+7}{x^{2}} d x$
$\int \sec x(\sec x+\tan x) d x$
2. U-Substitution (Reverse Chain Rule)
A. How? $\quad \int f(g(x)) g^{\prime}(x) d x=$

Step 1: Substitute $u=g(x)$ and $d u=x \mathrm{dx}$ so that you have $\int f(u) d u$.
Step 2: Integrate with respect to u.
Step 3: Replace u by $g(x)$ in the result.
B. Examples:

$$
\int(5 x+7)^{14} d x ; \text { Let } u=5 x+7 \quad \int x\left(4 x^{2}-7\right)^{10} d x ; \text { Let } u=4 x^{2}-7
$$

AP Calculus
Ricketts
$\int x \cos \left(3 x^{2}+1\right) d x ;$ Let $u=3 x^{2}+1$
$\int \sin (\sin x) \cos x d x ;$ Let $u=\sin x$
$\int \sin 2 x \cos 2 x d x$
$\int \cos ^{2} x d x$
(using Trig. Identity: $\cos ^{2} x=\frac{1+\cos 2 x}{2}$)

Trig Identities and More Examples for Section 6-2:

Fundamental Identities

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Double-Angle Formulas

$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
Half-Angle Formulas

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

Addition and Subtraction Formulas

$$
\begin{aligned}
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \sin (x-y)=\sin x \cos y-\cos x \sin y \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \cos (x-y)=\cos x \cos y+\sin x \sin y \\
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& \tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}
\end{aligned}
$$

A Note on Absolute Value: Since the indefinite integral does not specify a domain, you should always use the absolute value when finding $\int \frac{1}{u} d u$. The function $\ln u+C$ is only defined on positive u-intervals, while the function $\ln |u|+C$ is defined on both the positive and negative intervals in the domain of $1 / u$.

Example 1: $\int \cot (7 x) d x$
Example 2: $\int \cot ^{2}(3 x) d x$

Section 6-4: Exponential Growth and Decay

Objectives:

- Solve problems involving exponential growth and decay in a variety of applications.

Part 1: Separable Differential Equations

1. Definition: A differential equation of the form $\frac{d y}{d x}=f(y) g(x)$ is called separable. We separate the variables by writing it in the form $\frac{1}{f(y)} d y=g(x) d x$. The solution is found by antidifferentiating each side with respect to its thusly isolated variable.

Example 1: Solve for y if $d y / d x=(x y)^{2}$ and $y=1$ when $x=1$.

Example 2: Solve for y if $\frac{d y}{d x}=\frac{-x}{y}$ and $y=3$ when $x=4$.

Assignment: Pg 357 \#'s 1-9 odds + Calculaugh \# 52 (Show work on a different paper)

Part 2: Exponential Growth and Decay

1. Law of Exponential Change:

- Is used for all problems when growth/decay happens at a proportional rate i.e. the rate of change is proportional to the amount present.
- The differential equation that describes this is $d y / d t=k y$ where k is the growth (if positive) or decay (if negative) constant.
- Types of problems include compounding interest, radioactive decay, Newton's Law of Cooling etc.

2. Definition of Half-Life: The half-life of a radioactive substance with rate constant $k(k>0)$ is half-life $=\frac{\ln 2}{k}$.
3. Show that the differential equation $d y / d t=k y$ results in the familiar formula $y=A e^{k t}$.
4. Newton's Law of Cooling: is $T-T_{S}=\left(T_{0}-T_{s}\right) e^{-k t}$.

Example: A hard-boiled egg at $98^{\circ} \mathrm{C}$ is put in a pan under running $18^{\circ} \mathrm{C}$ water to cool. After 5 mins, the egg's temperature is found to be $38^{\circ} \mathrm{C}$. How much longer will it take the egg to reach $20^{\circ} \mathrm{C}$?

NOTE: You should memorize that carbon-14 has a half-life of 5700 years.

Assignment: Pg 357 \#'s 22-38 evens. Note: 36 a \& b only.

CHAPTER 6 TEST REVIEW

The test will take two days. The first day will be no calculator. The following topics will be covered on the test.

- Integration: Definite vs Indefinite
- Memorization of rules
- U-Substitution
- Initial Value Problems
- Separable differential equations
- Applied problems
- Slope fields

Assignment: Pg 373 \#'s 3, 6, 8, 12, 15, 17, 18, 26, 27, 31, 32, 35, 37, 49, 52, 63. (In \#'s 31, 32, solve for y)

