## **Blood Type Punnett Square Practice**

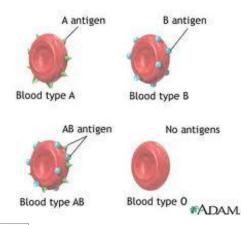
There are four major blood groups determined by the presence or absence of two antigens (proteins) – A and B – on the surface of red blood cells:

**Group A** – has only the A antigen on red cells (and B antibody in the plasma)

**Group B** – has only the B antigen on red cells (and A antibody in the plasma)

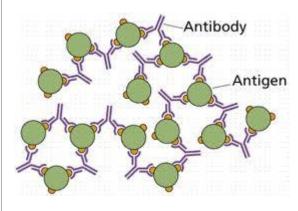
**Group AB** – has both A and B antigens on red cells (but neither A nor B antibody in the plasma)

**Group O** – has neither A nor B antigens on red cells (but both A and B antibody are in the plasma)


Since foreign antigens can trigger a patient's immune system to attack the transfused blood with antibodies, safe blood transfusions depend on careful blood typing and cross-matching.

There are 3 alleles of the gene that controls blood type:  $I^A$ ,  $I^B$ , i The I stands for immunoglobin, or the type of white blood cell that would be triggered to attack.

 $I^A$  and  $I^B$  are Co-Dominant genes, meaning when inherited together, they are both fully expressed, not blended, as in Incomplete Dominance. "i" is the recessive form of the allele.


Possible genotypes are as follows:

| Genotypes                              | Blood Type |
|----------------------------------------|------------|
| $\overline{I^A I^A \text{ or } I^A}$ i | A          |
| $I^BI^B$ or $I^Bi$                     | В          |
| $I^AI^B$                               | AB         |
| ii                                     | O          |



| Blood<br>Type | Antigen<br>(RBC membrane) | Antibody<br>(plasma)              | Can receive blood from | Can donate blood to |
|---------------|---------------------------|-----------------------------------|------------------------|---------------------|
| A<br>(40%)    | A antigen                 | Anti-B<br>antibodies              | A, O                   | A, AB               |
| B<br>(10%)    | B antigen                 | Anti-A<br>antibodies              | В, О                   | B, AB               |
| AB<br>(4%)    | A antigen<br>B antigen    | No<br>antibodies                  | A, B, AB, O            | АВ                  |
| O<br>(46%)    | No antigen                | Both Anti-A and Anti-B antibodies | 0                      | O, A, B, AB         |

## Agglutination



Copyright © 2006, 2003 by Mosby, Inc. an affiliate of Elsevier Inc.

| An additional complication in blood typing is that there is a third major antigen called the Rh factor |
|--------------------------------------------------------------------------------------------------------|
| If you have the Rh antigen as well, we say you are Rh +. No Rh antigen, you are Rh                     |
| Each of the four A, B, AB, O blood types can come with or without the Rh factor. We will not deal      |
| with the Rh factor in the following genetics problems.                                                 |

|              |     |     |    | 4  |   |
|--------------|-----|-----|----|----|---|
| $\Delta$ CCI | on  | m   | ρn | t٠ | , |
| Assi         | 211 | 111 |    | ·  | , |

| Show the punnett square and phenotypic ratio | os for the fo | llowing cross | ses:    |  |
|----------------------------------------------|---------------|---------------|---------|--|
| 1) Both the father and mother have type (    | O blood.      |               |         |  |
| X                                            |               |               |         |  |
| Phenotypic Ratio:                            |               |               |         |  |
|                                              |               |               |         |  |
| 2) The father is type A homozygous, the n    | nother is typ | pe B homozy   | ygous.  |  |
| X                                            |               |               |         |  |
|                                              |               |               |         |  |
| Phenotypic Ratio:                            |               |               |         |  |
|                                              |               |               |         |  |
| 3) The father is type A heterozygous, the i  | mother is ty  | pe B hetero   | zygous. |  |
| X                                            |               |               |         |  |
|                                              |               |               |         |  |
| Phenotypic Ratio:                            |               |               |         |  |
| <u></u>                                      |               |               |         |  |
| 4) The father has type O blood, the mothe    | er has type   | AB blood.     |         |  |
| X                                            |               | <u> </u>      | ٦       |  |
|                                              |               |               |         |  |
| Phenotypic Ratio:                            |               |               | 1       |  |

| 5) Both the father and mother have type AB blood.                                                                                                                                                                                                   |              |               |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------------------|
| Phenotypic Ratio:                                                                                                                                                                                                                                   |              |               |                      |
| 6) Alice has type A blood and her husband Mark has ty Their first child, Amanda, has type O blood. Their second child, Alex, has type AB blood.  What is Alice's genotype? What is Mark's genotype? Show how you found the answer by completing the |              | ure(s) below: |                      |
| 7) Candace has type B blood. Her husband Dan has ty                                                                                                                                                                                                 | me AR blood  |               |                      |
| Is it possible for Candace and Dan to have a child the why not (use a Punnett square to help).                                                                                                                                                      | -            |               | Explain why or       |
| 8) Ralph has type B blood and his wife Rachel has type their baby has type O blood, and think that a switce this baby be theirs? Explain why                                                                                                        | h might have | e been made   | at the hospital. Can |